|
Эта публикация цитируется в 8 научных статьях (всего в 8 статьях)
On the form of dispersive shock waves of the Korteweg–de Vries equation
I. Egorovaa, Z. Gladkaa, G. Teschlbc a B. Verkin Institute for Low Temperature Physics and Engineering,
National Academy of Sciences of Ukraine, 47 Nauki Ave., Kharkiv, 61103, Ukraine
b Faculty of Mathematics University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Wien, Austria
c International Erwin Schrödinger Institute for Mathematical Physics, Boltzmanngasse 9, 1090 Wien, Austria
Аннотация:
We show that the long-time behavior of solutions to the Korteweg–de Vries shock problem can be described as a slowly modulated one-gap solution in the dispersive shock region. The modulus of the elliptic function (i.e., the spectrum of the underlying Schrödinger operator) depends only on the size of the step of the initial data and on the direction, $\frac{x}{t}=$const, along which we determine the asymptotic behavior of the solution. In turn, the phase shift (i.e., the Dirichlet spectrum) in this elliptic function depends also on the scattering data, and is computed explicitly via the Jacobi inversion problem.
Ключевые слова и фразы:
KdV equation, steplike, dispersive shock wave.
Поступила в редакцию: 12.10.2015
Образец цитирования:
I. Egorova, Z. Gladka, G. Teschl, “On the form of dispersive shock waves of the Korteweg–de Vries equation”, Журн. матем. физ., анал., геом., 12:1 (2016), 3–16
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/jmag626 https://www.mathnet.ru/rus/jmag/v12/i1/p3
|
Статистика просмотров: |
Страница аннотации: | 278 | PDF полного текста: | 70 | Список литературы: | 60 |
|