|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Algebro-geometric solutions to a new hierarchy of soliton equations
Hui Wangab, Xianguo Genga a School of Mathematics and Statistics, Zhengzhou University, 100 Kexue Road, Zhengzhou, Henan 450001, People’s Republic of China
b College of Sciences, Henan Institute of Engineering,
Zhengzhou, Henan 451191, People's Republic of China
Аннотация:
With the help of the Lenard recursion equations, we derive a new hierarchy of soliton equations associated with a $3\times3$ matrix spectral problem and establish Dubrovin type equations in terms of the introduced trigonal curve $\mathcal{K}_{m-1}$ of arithmetic genus $m-1$. Basing on the theory of algebraic curve, we construct the corresponding Baker–Akhiezer functions and meromorphic functions on $\mathcal{K}_{m-1}$. The known zeros and poles for the Baker–Akhiezer function and meromorphic functions allow us to find their theta function representations, from which algebro-geometric constructions and theta function representations of the entire hierarchy of soliton equations are obtained.
Ключевые слова и фразы:
trigonal curve; Baker–Akhiezer function; algebro-geometric solutions.
Поступила в редакцию: 12.06.2014 Исправленный вариант: 19.04.2015
Образец цитирования:
Hui Wang, Xianguo Geng, “Algebro-geometric solutions to a new hierarchy of soliton equations”, Журн. матем. физ., анал., геом., 11:4 (2015), 359–398
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/jmag625 https://www.mathnet.ru/rus/jmag/v11/i4/p359
|
Статистика просмотров: |
Страница аннотации: | 214 | PDF полного текста: | 76 | Список литературы: | 65 |
|