|
Журнал математической физики, анализа, геометрии, 2007, том 3, номер 2, страницы 253–276
(Mi jmag62)
|
|
|
|
Invariant totally geodesic unit vector fields on three-dimensional Lie groups
A. Yampolsky Department of Mechanics and Mathematics, V.N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61077, Ukraine
Аннотация:
We give a complete list of left-invariant unit vector fields on three-dimensional Lie groups equipped with a left-invariant metric that generate a totally geodesic submanifold in the unit tangent bundle of a group equipped with the Sasaki metric. As a result we obtain that each three-dimensional Lie group admits totally geodesic unit vector field under some conditions on structural constants. From a geometrical viewpoint, the field is either parallel or a characteristic vector field of a natural almost contact structure on the group.
Ключевые слова и фразы:
Sasaki metric, totally geodesic unit vector field, almost contact structure, Sasakian structure.
Поступила в редакцию: 22.03.2006
Образец цитирования:
A. Yampolsky, “Invariant totally geodesic unit vector fields on three-dimensional Lie groups”, Журн. матем. физ., анал., геом., 3:2 (2007), 253–276
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/jmag62 https://www.mathnet.ru/rus/jmag/v3/i2/p253
|
Статистика просмотров: |
Страница аннотации: | 178 | PDF полного текста: | 44 | Список литературы: | 44 |
|