|
Refinement of Isoperimetric Inequality of Minkowski with the Account of Singularities in Boundaries of Intrinsic Parallel Bodies
V. I. Diskant Cherkasy State Technologic University, 460 Shevchenko Blvd., Cherkasy 18006, Ukraine
Аннотация:
The following inequalities are proved:
\begin{eqnarray*}
S^n(A,B)\geq n^n\sum\limits_{i=0}^{k-1} V(B_{A_i})\left( V^{n-1}(A_i) - V^{n-1}(A_{i+1}) \right) +S^n(A_{-T}(B),B),
\end{eqnarray*}
\begin{eqnarray*}
S^n(A,B)\geq n^n\int\limits_{0}^{T} g(t) df(t) +S^n(A_{-T}(B),B),
\end{eqnarray*}
\begin{eqnarray*}
S^n(A,B)\geq n^n\int\limits_{0}^{q} g(t) df(t) +S^n(A_{-q}(B),B),
\end{eqnarray*}
where $V(A)$, $V(B)$ stand for the volumes of convex bodies $A$ and $B$ in
$\mathbb R^n$ ($n\geq 2$), $S(A,B)$ denotes the area of the surface of the
body $A$ relative to the body $B$, $q$ is the capacity factor of the body
$B$ with respect to the body $A$, $A_i = A_{-t_i}(B) = A / (t_iB)$ is the
inner body parallel to the body $A$ with respect to the body $B$ at a
distance $t_i$, $0=t_0 < t_1 <\ldots< t_i< \ldots < t_{k-1}<t_k=T<q$,
$B_{A_i}$ is a shape body of $A_i$ relative to $B$, $g(t) =
V(B_{A_{-t}(B)})$, $f(t) = - V^{n-1}( A_{-t}(B))$, $\int\limits_{0}^{T}
g(t) df(t) $ is the Riemann–Stieltjes integral of the function $g(t)$ by
the function $f(t)$, and $\int\limits_{0}^{q} g(t) df(t) =
\lim\limits_{T\to q} \int\limits_{0}^{T} g(t) df(t)$.
Ключевые слова и фразы:
convex body, isoperimetric inequality, Minkowski inequality.
Поступила в редакцию: 14.05.2013 Исправленный вариант: 23.12.2013
Образец цитирования:
V. I. Diskant, “Refinement of Isoperimetric Inequality of Minkowski with the Account of Singularities in Boundaries of Intrinsic Parallel Bodies”, Журн. матем. физ., анал., геом., 10:3 (2014), 309–319
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/jmag596 https://www.mathnet.ru/rus/jmag/v10/i3/p309
|
|