|
Журнал математической физики, анализа, геометрии, 2013, том 9, номер 4, страницы 582–593
(Mi jmag580)
|
|
|
|
On the Skitovich–Darmois Theorem for $\mathbf{a}$-Adic Solenoids
I. P. Mazur B. Verkin Institute for Low Temperature Physics and Engineering,
National Academy of Sciences of Ukraine,
47 Lenin Ave., Kharkiv 61103, Ukraine
Аннотация:
By the Skitovich–Darmois theorem, the Gaussian distribution on the real line is characterized by the independence of two linear forms of $n$ independent random variables. The theorem is known to fail for a compact connected Abelian group even in the case when $n=2$. In the paper, it is proved that a weak analogue of the Skitovich–Darmois theorem holds for some $\mathbf{a}$-adic solenoids if we consider three independent linear forms of three random variables.
Ключевые слова и фразы:
Skitovich–Darmois theorem, functional equation, $\mathbf{a}$-adic solenoid.
Поступила в редакцию: 10.07.2013
Образец цитирования:
I. P. Mazur, “On the Skitovich–Darmois Theorem for $\mathbf{a}$-Adic Solenoids”, Журн. матем. физ., анал., геом., 9:4 (2013), 582–593
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/jmag580 https://www.mathnet.ru/rus/jmag/v9/i4/p582
|
Статистика просмотров: |
Страница аннотации: | 160 | PDF полного текста: | 44 | Список литературы: | 41 |
|