|
Журнал математической физики, анализа, геометрии, 2013, том 9, номер 2, страницы 239–265
(Mi jmag559)
|
|
|
|
Spectrum of Two-Magnon non-Heisenberg Ferromagnetic Model of Arbitrary Spin with Impurity
S. M. Tashpulatov Institute of Nuclear Physics, Academy of Sciences of Uzbekistan
Аннотация:
We consider a two-magnon system in the isotropic non-Heisenberg ferromagnetic model of an arbitrary spin $s$ on a $\nu$-dimensional lattice $Z^{\nu}$. We establish that the essential spectrum of the system consists of the union of at most four intervals. We obtain lower and upper estimates for the number of three-particle bound states, i.e., for the number of points of discrete spectrum of the system.
Ключевые слова и фразы:
non-Heisenberg ferromagnet, essential spectrum, discrete spectrum, three-particle discrete Schrödinger operator, compact operator, finite-dimensional operator, lattice, spin.
Поступила в редакцию: 12.05.2011 Исправленный вариант: 06.06.2012
Образец цитирования:
S. M. Tashpulatov, “Spectrum of Two-Magnon non-Heisenberg Ferromagnetic Model of Arbitrary Spin with Impurity”, Журн. матем. физ., анал., геом., 9:2 (2013), 239–265
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/jmag559 https://www.mathnet.ru/rus/jmag/v9/i2/p239
|
|