|
Математическая физика, анализ, геометрия, 2002, том 9, номер 3, страницы 487–492
(Mi jmag311)
|
|
|
|
Эта публикация цитируется в 3 научных статьях (всего в 3 статьях)
On partial fraction expansion for meromorphic functions
L. S. Maergoiz Krasnoyarsk State Architecture and Civil Engineering, Academy 82 Svobodny Ave., Krasnoyarsk, 660041, Russia
Аннотация:
The paper is a short survey of results devoted to partial fraction expansion for meromorphic functions of one complex variable. In particular, this contains new results by the author on representation of a meromorphic function $\Phi$ on $\mathbb C$ in the form
$$
\Phi(z)=\lim_{R\to\infty}\sum_{|b_k|<R}\Phi_k(z)+\alpha(z),
$$
where $\{b_k\}_1^\infty$ is the sequence of all its poles arranged in the order of increase of the absolute values and tending to $\infty$,
$$
\biggl\{\Phi_k(z)=\sum_{n=1}^{N_k}\frac{A_{k,n}}{(z-b_k)^n},\ k=1,2,\dots\biggr\}
$$
is the sequence of principal parts of the Laurent expansion of $\Phi$ near the poles, and $\alpha$ is an entire function.
Поступила в редакцию: 01.12.2001
Образец цитирования:
L. S. Maergoiz, “On partial fraction expansion for meromorphic functions”, Матем. физ., анал., геом., 9:3 (2002), 487–492
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/jmag311 https://www.mathnet.ru/rus/jmag/v9/i3/p487
|
|