|
Математическая физика, анализ, геометрия, 2002, том 9, номер 3, страницы 352–368
(Mi jmag298)
|
|
|
|
On Wiegerinck's support theorem
Dmitri Logvinenkoa, Vladimir Logvinenkob a Senior Program Analist NCS Pearson, 827 W.Grove Ave., Mesa, AZ 85210
b Mathematics Department, De Anza College, 21250 Stevens Creek Blvd Mountain View, Ca 95014-5793, USA
Аннотация:
Let continuous function $f(x)$, $x\in\mathbb R^n$, tend to $0$ as $\|x\|\to\infty$ faster than any negative degree of $\|x\|$. Let Radon transform $\tilde f(\omega,t)$, $\omega\in\mathbb R^n$, $\|\omega\|=1$, $t\in\mathbb R$, of $f$ also tend to $0$ as $t\to\infty$ and, besides, do it very fast on a massive enough set of $\omega$. In the paper, we describe the additional properties that $f$ has under these assumptions for different rates of fast decreasing. In particular, the extremal case where $\tilde f(\omega,t)$ has the compact support with respect to $t$ for the open subset of unit sphere corresponds to Wiegerinck's Theorem mentioned in the title.
Поступила в редакцию: 09.12.2001
Образец цитирования:
Dmitri Logvinenko, Vladimir Logvinenko, “On Wiegerinck's support theorem”, Матем. физ., анал., геом., 9:3 (2002), 352–368
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/jmag298 https://www.mathnet.ru/rus/jmag/v9/i3/p352
|
|