|
Математическая физика, анализ, геометрия, 2002, том 9, номер 2, страницы 128–145
(Mi jmag278)
|
|
|
|
Эта публикация цитируется в 3 научных статьях (всего в 3 статьях)
Gauss type complex quadrature formulae, power moment problem and elliptic curves
Yuri I. Lyubich Department of Mathematics, Technion, 32000, Haifa, Israel
Аннотация:
A complex-valued Borel measure $\omega$ on $\mathbb C$ is called $n$-reducible if there is a quadrature formula with $n$ complex nodes which is exact for all polynomials of degree $\le 2n-1$. A criterion of $n$-reducibility is given on the base of a solvability criterion for a complex power moment problem. The latter is an analytic version of a Sylvester theorem from the theory of binary form invariants. The $2$-reducibility of measures $\omega$ with $|{\mathrm{supp}\,\omega}|=3$ is closely related to the modular invariants of elliptic curves.
Поступила в редакцию: 20.01.2002
Образец цитирования:
Yuri I. Lyubich, “Gauss type complex quadrature formulae, power moment problem and elliptic curves”, Матем. физ., анал., геом., 9:2 (2002), 128–145
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/jmag278 https://www.mathnet.ru/rus/jmag/v9/i2/p128
|
|