|
Математическая физика, анализ, геометрия, 2003, том 10, номер 4, страницы 490–497
(Mi jmag263)
|
|
|
|
On a criterion of belonging to the Hardy class $H_p(\mathbb C_{+})$ up to exponential factor
Seçil Gergüna, I. V. Ostrovskiiba a Department of Mathematics, Bilkent University, 06800 Bilkent, Ankara, Turkey
b Mathematical Divizion, BB. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 47, Lenin Ave., Kharkiv, 61103, Ukraine
Аннотация:
A criterion of belonging to the Hardy class $H_p(\mathbb C_{+})$ up to factor $e^{ikz}$ is obtained. It deals with functions $f$ analytic in $\mathbb C_{+}$, having Blaschke zero-sets, and satisfying the condition $|f(z)|\leq \exp\{|{\mathrm{Im}}\,z|^{-1}\exp(o(|z|))\}$, $z\to\infty$, $z\in\mathbb C_{+}$.
Поступила в редакцию: 16.12.2002
Образец цитирования:
Seçil Gergün, I. V. Ostrovskii, “On a criterion of belonging to the Hardy class $H_p(\mathbb C_{+})$ up to exponential factor”, Матем. физ., анал., геом., 10:4 (2003), 490–497
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/jmag263 https://www.mathnet.ru/rus/jmag/v10/i4/p490
|
Статистика просмотров: |
Страница аннотации: | 189 | PDF полного текста: | 51 |
|