|
Математическая физика, анализ, геометрия, 2003, том 10, номер 4, страницы 447–468
(Mi jmag260)
|
|
|
|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
The spectrum of Schrödinger operators with quasi-periodic algebro-geometric KdV potentials
Vladimir Batchenko, Fritz Gesztesy Department of Mathematics, University of Missouri, Columbia, MO 65211, USA
Аннотация:
In this announcement we report on a recent characterization of the spectrum of one-dimensional Schrödinger operators $H=-d^2/dx^2+V$ in $L^2(\mathbb R;dx)$ with quasi-periodic complex-valued algebro-geometric potentials $V$ (i.e., potentials $V$ which satisfy one (and hence infinitely many) equation(s) of the stationary Korteweg–de Vries (KdV) hierarchy) associated with nonsingular hyperelliptic curves in [1]. It turns out the spectrum of $H$ coincides with the conditional stability set of $H$ and that it can explicitly be described in terms of the mean value of the inverse of the diagonal Green's function of $H$. As a result, the spectrum of $H$ consists of finitely many simple analytic arcs and one semi-infinite simple analytic arc in the complex plane. Crossings as well as confluences of spectral arcs are possible and discussed as well. These results extend to the $L^p(\mathbb R;dx)$-setting for $p\in [1,\infty)$.
Поступила в редакцию: 03.11.2003
Образец цитирования:
Vladimir Batchenko, Fritz Gesztesy, “The spectrum of Schrödinger operators with quasi-periodic algebro-geometric KdV potentials”, Матем. физ., анал., геом., 10:4 (2003), 447–468
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/jmag260 https://www.mathnet.ru/rus/jmag/v10/i4/p447
|
|