|
Математическая физика, анализ, геометрия, 2003, том 10, номер 3, страницы 335–365
(Mi jmag255)
|
|
|
|
Эта публикация цитируется в 21 научных статьях (всего в 21 статьях)
On the edge universality of the local eigenvalue statistics of matrix models
L. Pasturab, M. Shcherbinaa a Mathematical Divizion, B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 47, Lenin Ave., Kharkiv, 61103, Ukraine
b University Paris 7, 2 Place Jussieu, F-75251, Paris, Cedex 05, France
Аннотация:
Basing on our recent results on the $1/n$-expansion in unitary invariant random matrix ensembles, known as matrix models, we prove that the local eigenvalue statistic, arising in a certain neighborhood of the edges of the support of the density of states, is independent of the form of the potential, determining the matrix model. Our proof is applicable to the case of real analytic potentials and of supports, consisting of one or two disjoint intervals.
Поступила в редакцию: 15.04.2003
Образец цитирования:
L. Pastur, M. Shcherbina, “On the edge universality of the local eigenvalue statistics of matrix models”, Матем. физ., анал., геом., 10:3 (2003), 335–365
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/jmag255 https://www.mathnet.ru/rus/jmag/v10/i3/p335
|
|