|
Математическая физика, анализ, геометрия, 2004, том 11, номер 4, страницы 434–448
(Mi jmag219)
|
|
|
|
Эта публикация цитируется в 16 научных статьях (всего в 16 статьях)
A probabilistic approach to $q$-polynomial coefficients, Euler and Stirling numbers. I
A. Il'inskii Department of Mechanics and Mathematics, V. N. Karazin Kharkov National University, 4 Svobody Sq., Kharkov, 61077, Ukraine
Аннотация:
It is known that Bernoulli scheme of independent trials with two outcomes is connected with the binomial coefficients. The aim of this paper is to indicate stochastic processes which are connected with the $q$-polynomial coefficients (in particular, with the $q$-binomial coefficients, or the Gaussian polynomials), Stirling numbers of the first and the second kind, and Euler numbers in a natural way. A probabilistic approach allows us to give very simple proofs of some identities for these coefficients.
Поступила в редакцию: 05.07.2004
Образец цитирования:
A. Il'inskii, “A probabilistic approach to $q$-polynomial coefficients, Euler and Stirling numbers. I”, Матем. физ., анал., геом., 11:4 (2004), 434–448
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/jmag219 https://www.mathnet.ru/rus/jmag/v11/i4/p434
|
Статистика просмотров: |
Страница аннотации: | 240 | PDF полного текста: | 73 |
|