|
Математическая физика, анализ, геометрия, 2004, том 11, номер 4, страницы 408–420
(Mi jmag217)
|
|
|
|
Эта публикация цитируется в 4 научных статьях (всего в 4 статьях)
Absolutely continuous measures on the unit circle with sparse Verblunsky coefficients
Leonid Golinskii Mathematical Division, B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 47 Lenin Ave., Kharkov, 61103, Ukraine
Аннотация:
Orthogonal polynomials and measures on the unit circle are fully determined by their Verblunsky coefficients through the Szegő recurrences. We study measures $\mu$ from the Szegő class whose Verblunsky coefficients vanish off a sequence of positive integers with exponentially growing gaps. All such measures turn out to be absolutely continuous on the circle. We also gather some information about the density function $\mu'$.
Поступила в редакцию: 12.01.2004
Образец цитирования:
Leonid Golinskii, “Absolutely continuous measures on the unit circle with sparse Verblunsky coefficients”, Матем. физ., анал., геом., 11:4 (2004), 408–420
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/jmag217 https://www.mathnet.ru/rus/jmag/v11/i4/p408
|
Статистика просмотров: |
Страница аннотации: | 156 | PDF полного текста: | 67 |
|