|
Математическая физика, анализ, геометрия, 2004, том 11, номер 4, страницы 375–379
(Mi jmag215)
|
|
|
|
A sharp inequality for the order of the minimal positive harmonic function in $T$-homogeneous domain
V. Azarin, A. Gol'dberg Department of Mathematics, Bar-Ilan University, Ramat-Gan, 52900, Israel
Аннотация:
Let $G$ be a simply connected domain in $\mathbb C$ which is $T$-homoheneous, i.e., $TG=G$ for some $T>0$. Let $\rho(G)$ be the order of the minimal positive harmonic function in $G$. We prove that a kind of symmetrization of $G$ and prove that it does not increase $\rho(G)$. This implies a sharp lower bound for $\rho(G)$ in terms of conformal modulus of a quadrilateral naturally connected with $G$.
Поступила в редакцию: 02.02.2004
Образец цитирования:
V. Azarin, A. Gol'dberg, “A sharp inequality for the order of the minimal positive harmonic function in $T$-homogeneous domain”, Матем. физ., анал., геом., 11:4 (2004), 375–379
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/jmag215 https://www.mathnet.ru/rus/jmag/v11/i4/p375
|
Статистика просмотров: |
Страница аннотации: | 138 | PDF полного текста: | 73 |
|