|
Математическая физика, анализ, геометрия, 2004, том 11, номер 1, страницы 107–113
(Mi jmag192)
|
|
|
|
On the growth of a subharmonic function with Riesz' measure on a ray
A. A. Gol'dberga, I. V. Ostrovskiib a Department of Mathematics, Bar-Ilan University, Ramat-Gan, 52900, Israel
b Mathematical Division, B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 47 Lenin Ave., Kharkov, 61103, Ukraine
Аннотация:
We consider functions $v$ subharmonic in $\mathbf R^n$, $n\ge2$, which are natural counterparts of Weierstrass canonical products (so-called Weierstrass canonical integrals). Under assumptions that the order of $v$ is a noninteger number and the Riesz measure of $v$ is supported by a ray we obtain sharp estimates of asymptotical behavior of $v$ at infinity along rays.
Поступила в редакцию: 25.06.2003
Образец цитирования:
A. A. Gol'dberg, I. V. Ostrovskii, “On the growth of a subharmonic function with Riesz' measure on a ray”, Матем. физ., анал., геом., 11:1 (2004), 107–113
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/jmag192 https://www.mathnet.ru/rus/jmag/v11/i1/p107
|
|