|
Журнал математической физики, анализа, геометрии, 2009, том 5, номер 1, страницы 12–24
(Mi jmag114)
|
|
|
|
Retroreflecting curves in nonstandard analysis
R. Almeidaa, V. Nevesa, A. Plakhovab a Department of Mathematics, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
b Institute of Mathematical and Physical Sciences, University of Aberystwyth, Aberystwyth SY23 3BZ, Ceredigion, UK
Аннотация:
We present a direct construction of retroreecting curves by means of Nonstandard Analysis. We construct non self-intersecting curves which are of class $C^1$, except for a hyper-nite set of values, such that the probability of a particle being reected from the curve with the velocity opposite to the velocity of incidence, is innitely close to 1. The constructed curves are of two kinds: a curve innitely close to a straight line and a curve innitely close to the boundary of a bounded convex set. We shall see that the latter curve is a solution of the problem: nd the curve of maximum resistance innitely close to a given curve.
Ключевые слова и фразы:
Nonstandard Analysis, retroreflectors, maximum resistance problems, reflection, billiards.
Поступила в редакцию: 29.03.2008
Образец цитирования:
R. Almeida, V. Neves, A. Plakhov, “Retroreflecting curves in nonstandard analysis”, Журн. матем. физ., анал., геом., 5:1 (2009), 12–24
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/jmag114 https://www.mathnet.ru/rus/jmag/v5/i1/p12
|
Статистика просмотров: |
Страница аннотации: | 180 | PDF полного текста: | 61 | Список литературы: | 47 |
|