|
Журнал математической физики, анализа, геометрии, 2008, том 4, номер 4, страницы 529–550
(Mi jmag111)
|
|
|
|
Bifurcations of solitary waves
E. A. Kuznetsova, D. S. Agafontsevb, F. Diasc a P.N. Lebedev Physical Institute, 53 Leninsky Ave., Moscow, 119991, Russia
b L.D. Landau Institute for Theoretical Physics, 2 Kosygin Str., Moscow, 119334, Russia
c CMLA, ENS Cachan, CNRS, PRES UniverSud, 61 Av. President Wilson, F-94230 Cachan, France
Аннотация:
The paper provides a brief review of the recent results devoted to bifurcations of solitary waves. The main attention is paid to the universality of soliton behavior and stability of solitons while approaching supercritical bifurcations. Near the transition point from supercritical to subcritical bifurcations, the stability of two families of solitons is studied in the framework of the generalized nonlinear Schrodinger equation. It is shown that one-dimensional solitons corresponding to the family of supercritical bifurcations are stable in the Lyapunov sense. The solitons from the subcritical bifurcation branch are unstable. The development of this instability results in the collapse of solitons. Near the time of collapse, the pulse amplitude and its width exhibit a self-similar behavior with a small asymmetry in the pulse tails due to self-steepening.
Ключевые слова и фразы:
stability, critical regimes, wave collapse.
Поступила в редакцию: 25.06.2008
Образец цитирования:
E. A. Kuznetsov, D. S. Agafontsev, F. Dias, “Bifurcations of solitary waves”, Журн. матем. физ., анал., геом., 4:4 (2008), 529–550
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/jmag111 https://www.mathnet.ru/rus/jmag/v4/i4/p529
|
Статистика просмотров: |
Страница аннотации: | 723 | PDF полного текста: | 73 | Список литературы: | 70 |
|