|
Письма в Журнал экспериментальной и теоретической физики, 2010, том 91, выпуск 6, страницы 339–345
(Mi jetpl681)
|
|
|
|
Эта публикация цитируется в 9 научных статьях (всего в 9 статьях)
МЕТОДЫ ТЕОРЕТИЧЕСКОЙ ФИЗИКИ
Analytical approximation for single-impurity Anderson model
I. S. Krivenkoa, A. N. Rubtsova, M. I. Katsnel'sonb, A. I. Lichtensteinc a Department of Physics, Moscow State University
b Radboud University
c Institut für Theoretische Physik, Universität Hamburg
Аннотация:
We propose a new renormalized strong-coupling expansion to describe the electron spectral properties of single-band Anderson impurity problem in a wide energy range. The first-order result of our scheme reproduces well the entire single-electron spectrum of correlated impurity with the Kondo-like logarithmic contributions to the self energy and the renormalization of atomic resonances due to hybridization with conduction electrons. The Friedel sum rule for a half-filled system is fulfilled. The approach is based on so-called dual transformation, so that the series is constructed in vertices of the corresponding atomic Hamiltonian problem. The atomic problem of single impurity has a degenerate ground state, so the application of the perturbation theory is not straightforward. We construct a special approach dealing with symmetry-broken ground state of the atomic problem. The renormalization ensures a convergence near the frequencies of atomic resonances. Proposed expansion contains a small parameter in the weak- and in the the strong-coupling case and interpolates well in between. Formulae for the first-order dual diagram correction are obtained analytically in the real-time domain. A generalization of this scheme to a multi-orbital case can be important for the realistic description of correlated solids.
Образец цитирования:
I. S. Krivenko, A. N. Rubtsov, M. I. Katsnel'son, A. I. Lichtenstein, “Analytical approximation for single-impurity Anderson model”, Письма в ЖЭТФ, 91:6 (2010), 339–345; JETP Letters, 91:6 (2010), 319–325
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/jetpl681 https://www.mathnet.ru/rus/jetpl/v91/i6/p339
|
Статистика просмотров: |
Страница аннотации: | 256 | PDF полного текста: | 86 | Список литературы: | 41 |
|