Аннотация:
Level anticrossing (LAC) spectroscopy has been demonstrated on a family of uniaxially oriented spin color centers with S=3/2 in the ground and excited states in hexagonal 4H-, 6H-, and rhombic 15R-SiC polytypes. It has been shown that these centers exhibit unique characteristics such as optical spin alignment up to the temperatures of 250∘C. A sharp variation of the IR photoluminescence intensity in the vicinity of LAC with the record contrast has been observed, which can be used for a purely all-optical sensing of the magnetic field and temperature without applying radiofrequency field. A distinctive feature of the LAC signal is weak dependence on the direction of the magnetic field that allows one to monitor the LAC signals in the nonoriented systems, such as powder of SiC nanocrystals.
The article is published in the original.
Образец цитирования:
A. N. Anisimov, R. A. Babunts, S. V. Kidalov, E. N. Mokhov, V. A. Soltamov, P. G. Baranov, “Spin centres in SiC for all-optical nanoscale quantum sensing under ambient conditions”, Письма в ЖЭТФ, 104:2 (2016), 83; JETP Letters, 104:2 (2016), 82–87
\RBibitem{AniBabKid16}
\by A.~N.~Anisimov, R.~A.~Babunts, S.~V.~Kidalov, E.~N.~Mokhov, V.~A.~Soltamov, P.~G.~Baranov
\paper Spin centres in SiC for all-optical nanoscale quantum sensing under ambient conditions
\jour Письма в ЖЭТФ
\yr 2016
\vol 104
\issue 2
\pages 83
\mathnet{http://mi.mathnet.ru/jetpl5025}
\crossref{https://doi.org/10.7868/S0370274X16140034}
\elib{https://elibrary.ru/item.asp?id=26375924}
\transl
\jour JETP Letters
\yr 2016
\vol 104
\issue 2
\pages 82--87
\crossref{https://doi.org/10.1134/S0021364016140010}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000385020700003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84978658428}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/jetpl5025
https://www.mathnet.ru/rus/jetpl/v104/i2/p83
Эта публикация цитируется в следующих 9 статьяx:
Kirill V. Likhachev, Maxim V. Uchaev, Igor P. Veyshtort, Anastasia V. Batueva, Aleksandr S. Gurin, Roman A. Babunts, Pavel G. Baranov, Journal of Applied Physics, 137:1 (2025)
К. В. Лихачев, И. П. Вейшторт, М. В. Учаев, А. В. Батуева, В. В. Яковлева, А. С. Гурин, Р. А. Бабунц, П. Г. Баранов, Письма в ЖЭТФ, 119:2 (2024), 82–88; K. V. Likhachev, I. P. Veishtort, M. V. Uchaev, A. V. Batueva, V. V. Yakovleva, A. S. Gurin, R. A. Babunts, P. G. Baranov, JETP Letters, 119:2 (2024), 78–83
Pavel G. Baranov, Roman A. Babunts, Nikolai G. Romanov, Appl Magn Reson, 55:9 (2024), 1011
Crawford S.E., Shugayev R.A., Paudel H.P., Lu P., Syamlal M., Ohodnicki P.R., Chorpening B., Gentry R., Duan Yu., Adv. Quantum Technol., 4:8 (2021), 2100049, 2100049
А. А. Лебедев, П. А. Иванов, М. Е. Левинштейн, Е. Н. Мохов, С. С. Нагалюк, А. Н. Анисимов, П. Г. Баранов, УФН, 189:8 (2019), 803–848; A. A. Lebedev, P. A. Ivanov, M. E. Levinshtein, E. N. Mokhov, S. S. Nagalyuk, A. N. Anisimov, P. G. Baranov, Phys. Usp., 62:8 (2019), 754–794
S. V. Anishchik, K. L. Ivanov, J. Magn. Reson., 305 (2019), 67–76
A. N. Anisimov, V. A. Soltamov, E. N. Mokhov, P. G. Baranov, G. V. Astakhov, V. Dyakonov, Appl. Magn. Reson., 49:1 (2018), 85–95
Р. А. Ахмеджанов, Л. А. Гущин, И. В. Зеленский, В. А. Низов, Н. А. Низов, Д. А. Собгайда, Квантовая электроника, 48:10 (2018), 912–915; Quantum Electron., 48:10 (2018), 912–915
P. G. Baranov, H. J. von Bardeleben, F. Jelezko, J. Wrachtrup: P. G. Baranov, H. J. von Bardeleben, F. Jelezko, J. Wrachtrup, Magnetic Resonance of Semiconductors and Their Nanostructures: Basic and Advanced Applications, Springer Series in Materials Science, 253, Springer-Verlag Wien, 2017, 435–518