|
Эта публикация цитируется в 30 научных статьях (всего в 30 статьях)
МЕТОДЫ ТЕОРЕТИЧЕСКОЙ ФИЗИКИ
On the defect and stability of differential expansion
Ya. Kononova, A. Morozovbcd a Higher School of Economics, Math Department, 117312 Moscow, Russia
b Institute for Information Transmission Problems, 127994 Moscow, Russia
c National Research Nuclear University "MEPhI", 15409 Moscow 1, Russia
d Institute for Theoretical and Experimental Physics, 117218 Moscow, Russia
Аннотация:
Empirical analysis of many colored knot polynomials, made possible by recent computational advances in Chern–Simons theory, reveals their stability: for any given negative $N$ and any given knot the set of coefficients of the polynomial in $r$-th symmetric representation does not change with $r$, if it is large enough. This fact reflects the non-trivial and previously unknown properties of the differential expansion, and it turns out that from this point of view there are universality classes of knots, characterized by a single integer, which we call defect, and which is in fact related to the power of Alexander polynomial.
Поступила в редакцию: 30.04.2015
Образец цитирования:
Ya. Kononov, A. Morozov, “On the defect and stability of differential expansion”, Письма в ЖЭТФ, 101:12 (2015), 931–934; JETP Letters, 101:12 (2015), 831–834
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/jetpl4663 https://www.mathnet.ru/rus/jetpl/v101/i12/p931
|
Статистика просмотров: |
Страница аннотации: | 180 | PDF полного текста: | 31 | Список литературы: | 50 | Первая страница: | 9 |
|