|
Эта публикация цитируется в 4 научных статьях (всего в 4 статьях)
МЕТОДЫ ТЕОРЕТИЧЕСКОЙ ФИЗИКИ
Matrix integral expansion of coloured Jones polynomials for
figure-eight knot
A. Aleksandrovab, D. G. Mel'nikovbc a Mathematics Institute, University of Freiburg
b Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center), Moscow
c International Institute of Physics, UFRN, Capim Macio, Brazil
Аннотация:
In this note we examine a possible extension of the matrix integral
representation of knot invariants beyond the class of torus knots. In
particular, we study a representation of the $SU(2)$ quantum Racah coefficients
by double matrix integrals. We find that the Racah coefficients are mapped to
expansion coefficients in some basis of double integrals. The transformed
coefficients have a number of interesting algebraic properties.
Поступила в редакцию: 20.11.2014
Образец цитирования:
A. Aleksandrov, D. G. Mel'nikov, “Matrix integral expansion of coloured Jones polynomials for
figure-eight knot”, Письма в ЖЭТФ, 101:1 (2015), 54–58; JETP Letters, 101:1 (2015), 51–56
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/jetpl4519 https://www.mathnet.ru/rus/jetpl/v101/i1/p54
|
|