|
Эта публикация цитируется в 5 научных статьях (всего в 5 статьях)
ПЛАЗМА, ГИДРО- И ГАЗОДИНАМИКА
On the persistence of breathers at deep water
F. Fedeleab a School of Electrical and Computer Engineering, Georgia Institute of Technology
b School of Civil and Environmental Engineering, Georgia Institute of Technology
Аннотация:
The long-time behavior of a perturbation to a uniform wavetrain of the compact
Zakharov equation is studied near the modulational instability threshold. A multiple-scale
analysis reveals that the perturbation evolves in accord with a focusing nonlinear
Schrodinger equation for values of wave steepness $\mu<\mu_{1}\approx0.274$. The
long-time dynamics is characterized by interacting breathers, homoclinic orbits to an
unstable wavetrain. The associated Benjamin–Feir index is a decreasing function of
$\mu$, and it vanishes at $\mu_{1}$. Above this threshold, the perturbation dynamics is of
defocusing type and breathers are suppressed. Thus, homoclinic orbits persist only for
small values of wave steepness $\mu\ll\mu_{1}$, in agreement with recent experimental
and numerical observations of breathers.
Поступила в редакцию: 27.08.2013 Исправленный вариант: 23.09.2013
Образец цитирования:
F. Fedele, “On the persistence of breathers at deep water”, Письма в ЖЭТФ, 98:9 (2013), 591–595; JETP Letters, 98:9 (2013), 523–527
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/jetpl3559 https://www.mathnet.ru/rus/jetpl/v98/i9/p591
|
Статистика просмотров: |
Страница аннотации: | 164 | PDF полного текста: | 51 | Список литературы: | 41 | Первая страница: | 2 |
|