|
Эта публикация цитируется в 14 научных статьях (всего в 14 статьях)
ПОЛЯ, ЧАСТИЦЫ, ЯДРА
The first-order deviation of superpolynomial
in an arbitrary representation from the special polynomial
A. Morozov Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center), Moscow
Аннотация:
Like all other knot polynomials, the superpolynomials
should be defined in arbitrary representation $R$ of
the gauge group in (refined) Chern–Simons theory.
However, not a single example is yet known of
a superpolynomial beyond symmetric or antisymmetric
representations.
Following the article Equations on knot polynomials and 3d/5d duality, we consider the
expansion of
the superpolynomial around the special polynomial
in powers of $q-1$ and $t-1$
and suggest a simple formula for the first-order
deviation, which is presumably valid for arbitrary
representation.
This formula can serve as a crucial lacking test
of various formulas for non-trivial superpolynomials,
which will appear in the literature in the near future.
Поступила в редакцию: 22.11.2012 Исправленный вариант: 25.01.2013
Образец цитирования:
A. Morozov, “The first-order deviation of superpolynomial
in an arbitrary representation from the special polynomial”, Письма в ЖЭТФ, 97:4 (2013), 195–196; JETP Letters, 97:4 (2013), 171–172
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/jetpl3350 https://www.mathnet.ru/rus/jetpl/v97/i4/p195
|
|