|
Письма в Журнал экспериментальной и теоретической физики, 2002, том 75, выпуск 3, страницы 191–146
(Mi jetpl3157)
|
|
|
|
КОНДЕНСИРОВАННЫЕ СРЕДЫ
Two-dimensional site-bond percolation as an example of self-averaging system
O. A. Vasil'ev L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences
Аннотация:
The Harris-Aharony for statical model criteria predicts, that if specific heat exponent $\alpha \ge 0$, then this model does not exhibit self-averaging. In two-dimensional percolation model the index $\alpha=-\frac{1}{2}$. It means, that in accordance with Harris-Aharony criteria, this model can exhibit self-averaging properties. We study numerically the relative variance $R_{M}$ and $R_{\chi}$ of the probability of site to belong the «infinite» (maximum) cluster $M$ and the mean finite cluster sizes $\chi$. It was shown, that two-dimensional site-bound percolation on the square lattice, where the bonds play role of impurity and sites play role of statistical ensemble, over which the averaging performed, exhibit self-averaging properties.
Поступила в редакцию: 27.12.2001
Образец цитирования:
O. A. Vasil'ev, “Two-dimensional site-bond percolation as an example of self-averaging system”, Письма в ЖЭТФ, 75:3 (2002), 191–146; JETP Letters, 75:3 (2002), 162–166
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/jetpl3157 https://www.mathnet.ru/rus/jetpl/v75/i3/p191
|
Статистика просмотров: |
Страница аннотации: | 134 | PDF полного текста: | 58 | Список литературы: | 31 |
|