|
Письма в Журнал экспериментальной и теоретической физики, 2008, том 88, выпуск 10, страницы 786–790
(Mi jetpl293)
|
|
|
|
Эта публикация цитируется в 6 научных статьях (всего в 6 статьях)
МЕТОДЫ ТЕОРЕТИЧЕСКОЙ ФИЗИКИ
Quantum dot version of topological phase: half-integer orbital angular momenta
V. D. Mura, N. B. Narozhnya, A. N. Petrosyana, Yu. E. Lozovikb a Moscow Engineering Physics Institute, Moscow, 115409, Russia
b Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow region, 142190, Russia
Аннотация:
We show that there exists a topological phase equal to $\pi$ for circular quantum dots with an odd number of electrons. The non-zero value of the topological phase is explained by axial symmetry and two-dimensionality of the system. Its particular value ($\pi$) is fixed by the Pauli exclusion principle and leads to half-integer values for the eigenvalues of the orbital angular momentum. Our conclusions agree with the experimental results of T. Schmidt et al., Phys. Rev. B 51, 5570 (1995), which can be considered as the first experimental evidence for the existence of the new topological phase and half-integer quantization of the orbital angular momentum in a system of an odd number of electrons in circular quantum dots.
Поступила в редакцию: 05.09.2008 Исправленный вариант: 06.10.2008
Образец цитирования:
V. D. Mur, N. B. Narozhny, A. N. Petrosyan, Yu. E. Lozovik, “Quantum dot version of topological phase: half-integer orbital angular momenta”, Письма в ЖЭТФ, 88:10 (2008), 786–790; JETP Letters, 88:10 (2008), 688–692
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/jetpl293 https://www.mathnet.ru/rus/jetpl/v88/i10/p786
|
Статистика просмотров: |
Страница аннотации: | 288 | PDF полного текста: | 110 | Список литературы: | 50 |
|