|
Письма в Журнал экспериментальной и теоретической физики, 2003, том 77, выпуск 6, страницы 309–313
(Mi jetpl2757)
|
|
|
|
ПОЛЯ, ЧАСТИЦЫ, ЯДРА
Feigenbaum universality in String theory
I. I. Koganab, D. Polyakovc a Theoretical Physics, Department of Physics, Oxford University
b Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center), Moscow
c Department of Physical Sciences, University of Helsinki and Helsinki Institute of Physics
Аннотация:
Brane-like vertex operators, defining backgrounds with the ghost-matter mixing in NSR superstring theory, play an important role in a world-sheet formulation of D-branes and M theory, being creation operators for extended objects in the second quantized formalism. In this paper we show that dilaton's beta function in ghost-matter mixing backgrounds becomes stochastic. The renormalization group (RG) equations in ghost-matter mixing backgrounds lead to non-Markovian Fokker-Planck equations which solutions describe superstrings in curved space-times with brane-like metrics. We show that Feigenbaum universality constant $\delta=4,669\dots$ describing transitions from order to chaos in a huge variety of dynamical systems, appears analytically in these RG equations. We find that the appearance of this constant is related to the scaling of relative space-time curvatures at fixed points of the RG flow. In this picture the fixed points correspond to the period doubling of Feigenbaum iterational schemes.
Поступила в редакцию: 23.12.2002 Исправленный вариант: 10.02.2003
Образец цитирования:
I. I. Kogan, D. Polyakov, “Feigenbaum universality in String theory”, Письма в ЖЭТФ, 77:6 (2003), 309–313; JETP Letters, 77:6 (2003), 260–265
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/jetpl2757 https://www.mathnet.ru/rus/jetpl/v77/i6/p309
|
|