|
Письма в Журнал экспериментальной и теоретической физики, 2003, том 78, выпуск 9, страницы 1021–1025
(Mi jetpl2646)
|
|
|
|
Эта публикация цитируется в 56 научных статьях (всего в 56 статьях)
НЕЛИНЕЙНАЯ ДИНАМИКА
Classical and quantum regimes of the superfluid turbulence
G. E. Volovikab a Low Temperature Laboratory, Helsinki University of Technology
b L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences
Аннотация:
We argue that turbulence in superfluids is governed by two dimensionless parameters. One of them is the intrinsic parameter $q$ which characterizes the friction forces acting on a vortex moving with respect to the heat bath, with $q^{-1}$ playing the same role as the Reynolds number ${\rm Re}=UR/\nu$ in classical hydrodynamics. It marks the transition between the «laminar» and turbulent regimes of vortex dynamics. The developed turbulence described by Kolmogorov cascade occurs when ${\rm Re}\gg 1$ in classical hydrodynamics, and $q\ll 1$ in the superfluid hydrodynamics. Another parameter of the superfluid turbulence is the superfluid Reynolds number ${\rm Re}_s=UR/\kappa$, which contains the circulation quantum $\kappa$ characterizing quantized vorticity in superfluids. This parameter may regulate the crossover or transition between two classes of superfluid turbulence: (i) the classical regime of Kolmogorov cascade where vortices are locally polarized and the quantization of vorticity is not important; (ii) the quantum Vinen turbulence whose properties are determined by the quantization of vorticity. The phase diagram of the dynamical vortex states is suggested.
Поступила в редакцию: 06.10.2003
Образец цитирования:
G. E. Volovik, “Classical and quantum regimes of the superfluid turbulence”, Письма в ЖЭТФ, 78:9 (2003), 1021–1025; JETP Letters, 78:9 (2003), 533–537
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/jetpl2646 https://www.mathnet.ru/rus/jetpl/v78/i9/p1021
|
Статистика просмотров: |
Страница аннотации: | 186 | PDF полного текста: | 66 | Список литературы: | 52 |
|