|
Письма в Журнал экспериментальной и теоретической физики, 2010, том 92, выпуск 6, страницы 410–414
(Mi jetpl1416)
|
|
|
|
Эта публикация цитируется в 5 научных статьях (всего в 5 статьях)
НЕЛИНЕЙНАЯ ДИНАМИКА
Dynamic and spectral mixing in nanosystems
V. A. Benderskiia, E. I. Katsbc a Institute of Problems of Chemical Physics RAS, Chernogolovka, Moscow Region, Russia
b L. D. Landau Institute for Theoretical Physics RAS,
Moscow, Russia
c Laue-Langevin Institute, Grenoble, France
Аннотация:
In the framework of simple spin-boson Hamiltonian we study an interplay between dynamic and spectral roots to stochastic-like behavior. The Hamiltonian describes an initial vibrational state coupled to discrete dense spectrum reservoir. The reservoir states are formed by three sequences with rationally independent periodicities $1\,;\, 1\pm\delta$ typical for vibrational states in many nanosize systems (e.g., large molecules containing CH$_2$ fragment chains, or carbon nanotubes). We show that quantum evolution of the system is determined by a dimensionless parameter $\delta$, $\Gamma$, where $\Gamma$ is characteristic number of the reservoir states relevant for the initial vibrational level dynamics. When $\delta\Gamma>1$ spectral chaos destroys recurrence cycles and the system state evolution is stochastic-like. In the opposite limit $\delta\Gamma<1$ dynamics is regular up to the critical recurrence cycle $k_c$ and for larger $k>k_c$ dynamic mixing leads to quasi-stochastic time evolution. Our semi-quantitative analytic results are confirmed by numerical solution of the equation of motion. We anticipate that both kinds of stochastic-like behavior (namely, due to spectral mixing and recurrence cycle dynamic mixing) can be observed by femtosecond spectroscopy methods in nanosystems in the spectral window $10^{11}$–$10^{13}\,$s$^{-1}$.
Поступила в редакцию: 10.08.2010
Образец цитирования:
V. A. Benderskii, E. I. Kats, “Dynamic and spectral mixing in nanosystems”, Письма в ЖЭТФ, 92:6 (2010), 410–414; JETP Letters, 92:6 (2010), 370–374
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/jetpl1416 https://www.mathnet.ru/rus/jetpl/v92/i6/p410
|
Статистика просмотров: |
Страница аннотации: | 197 | PDF полного текста: | 67 | Список литературы: | 38 |
|