Аннотация:
Similarly to the ordinary bosonic Liouville field theory, in its N=1 supersymmetric version an infinite set of operator valued relations, the “higher equations of motions”, hold. Equations are in one to one correspondence with the singular representations of the super Virasoro algebra and enumerated by a couple of natural numbers (m,n). We demonstrate explicitly these equations in the classical case, where the equations of type (1,n) survive and can be interpreted directly as relations for classical fields. The general form of higher equations of motion is established in the quantum case, both for the Neveu-Schwarz and Ramond series.
Поступила в редакцию: 18.09.2006 Исправленный вариант: 21.09.2006
Образец цитирования:
A. A. Belavin, Al. B. Zamolodchikov, “Higher Equations of Motion in N=1 SUSY Liouville Field Theory”, Письма в ЖЭТФ, 84:8 (2006), 496–502; JETP Letters, 84:8 (2006), 418–424
\RBibitem{BelZam06}
\by A.~A.~Belavin, Al.~B.~Zamolodchikov
\paper Higher Equations of Motion in $N=1$ SUSY Liouville Field Theory
\jour Письма в ЖЭТФ
\yr 2006
\vol 84
\issue 8
\pages 496--502
\mathnet{http://mi.mathnet.ru/jetpl1163}
\transl
\jour JETP Letters
\yr 2006
\vol 84
\issue 8
\pages 418--424
\crossref{https://doi.org/10.1134/S0021364006200033}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000243046500003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33845794922}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/jetpl1163
https://www.mathnet.ru/rus/jetpl/v84/i8/p496
Эта публикация цитируется в следующих 16 статьяx:
Ciosmak P., Hadasz L., Manabe M., Sulkowski P., Topological Recursion and Its Influence in Analysis, Geometry, and Topology, Proceedings of Symposia in Pure Mathematics, 100, eds. Liu C., Mulase M., Amer Mathematical Soc, 2018, 119–149
Ciosmak P., Hadasz L., Manabe M., Sulkowski P., J. High Energy Phys., 2016, no. 10, 044
Hadasz L., Jaskolski Z., Suchanek P., J. High Energy Phys., 2012, no. 9, 122
Suchanek P., Journal of High Energy Physics, 2011, no. 2, 090
Ahn Ch., Stanishkov M., Stoilov M., Phys Lett B, 695:5 (2011), 501–506
Yanagida Sh., Lett Math Phys, 98:2 (2011), 133–156
Belavin V., Feigin B., Journal of High Energy Physics, 2011, no. 7, 079
В. А. Белавин, ТМФ, 161:1 (2009), 46–62; V. A. Belavin, Theoret. and Math. Phys., 161:1 (2009), 1361–1375
Belavin A., Belavin V., Journal of Physics A-Mathematical and Theoretical, 42:30 (2009), 304003