|
Эта публикация цитируется в 3 научных статьях (всего в 3 статьях)
Computational Mathematics
Existence of solutions in quasi-Banach spaces for evolutionary Sobolev type equations in relatively radial case
M. A. Sagadeeva, A. S. Rashid South Ural State University, Chelyabinsk, Russian Federation
Аннотация:
Sobolev-type equations (equations not solved for the highest derivative) probably first appeared in the late nineteenth century. The growing recent interest in Sobolev-type equations motivates us to consider them in quasi-Banach spaces. Specifically, this study aims at understanding non-classical models of mathematical physics in quasi-Banach spaces. This paper carries over the theory of degenerate strongly continuous semigroups obtained earlier in Banach spaces to quasi-Banach spaces. We prove an analogue of the direct Hille – Yosida – Feller – Miyadera – Phillips theorem. As an application of abstract results, we consider the Showalter – Sidorov problem for modified linear Chen – Gurtin equations in quasi-Sobolev spaces.
Ключевые слова:
degenerate strong continuous semigroups, quasi-Banach spaces, Hille – Iosida – Feller – Miadera – Phillips theorem, modified Chen – Gurtin equation, quasi-Sobolev spaces.
Поступила в редакцию: 28.04.2015
Образец цитирования:
M. A. Sagadeeva, A. S. Rashid, “Existence of solutions in quasi-Banach spaces for evolutionary Sobolev type equations in relatively radial case”, J. Comp. Eng. Math., 2:2 (2015), 71–81
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/jcem7 https://www.mathnet.ru/rus/jcem/v2/i2/p71
|
Статистика просмотров: |
Страница аннотации: | 192 | PDF полного текста: | 71 | Список литературы: | 32 |
|