|
Computational Mathematics
Comparison of numerical modeling methods for quasi-steady process in conducting nondispersive medium with relaxation
E. A. Bogatyreva South Ural State University, Chelyabinsk, Russian Federation
Аннотация:
This article deals with different numerical methods of solving the Dirichlet – Cauchy problem for equation modeling the quasi-steady process in conducting nondispersive medium with relaxation. Known proofs of existence and uniqueness of solution to this problem are not constructive. Therefore the necessity of selection the appropriate numerical method arises. Such method should allow us to find a solution of the considered problem in the reasonable time. The comparative analysis of the Galerkin method and the method of straight lines with $\varepsilon$-embedding method and complex Rosenbrock method is performed in the article. The results of numerical experiments for one-dimensional case are shown.
Ключевые слова:
Galerkin method, Rosenbrock method, quasi-linear Sobolev type equation, weak generalized solution, numerical modeling.
Поступила в редакцию: 07.05.2015
Образец цитирования:
E. A. Bogatyreva, “Comparison of numerical modeling methods for quasi-steady process in conducting nondispersive medium with relaxation”, J. Comp. Eng. Math., 2:2 (2015), 13–18
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/jcem2 https://www.mathnet.ru/rus/jcem/v2/i2/p13
|
Статистика просмотров: |
Страница аннотации: | 363 | PDF полного текста: | 53 | Список литературы: | 35 |
|