|
Computational Mathematics
Numerical solution of optimal control problem for the model of linear waves in plasma
[Численное решение задачи оптимального управления для модели линейных волн в плазме]
A. A. Zamyshlyaeva, O. N. Tsyplenkova South Ural State University, Chelyabinsk, Russian Federation
Аннотация:
В статье рассмотрено оптимальное управление в математической модели ионно-звуковых волн во внешнем магнитном поле. Для данной модели на основе теоретических результатов был разработан алгоритм для численного решения задачи, основанный на модифицированном методе Галеркина и методе Ритца. Минимум функционала определяется как минимум по коэффициентам в компонентах управления. Алгоритм реализован в среде Maple. При помощи разработанной программы приведен результат вычислительного эксперимента. Математическая модель, рассмотренная в статье, впервые была получена Ю.Д. Плетнером.
Ключевые слова:
уравнения соболевского типа высокого порядка, модель линейных волн в плазме, оптимальное управление, метод Галеркина, численное решение.
Поступила в редакцию: 05.10.2019
Образец цитирования:
A. A. Zamyshlyaeva, O. N. Tsyplenkova, “Numerical solution of optimal control problem for the model of linear waves in plasma”, J. Comp. Eng. Math., 6:4 (2019), 69–78
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/jcem159 https://www.mathnet.ru/rus/jcem/v6/i4/p69
|
Статистика просмотров: |
Страница аннотации: | 148 | PDF полного текста: | 99 |
|