|
Эта публикация цитируется в 3 научных статьях (всего в 3 статьях)
Computational Mathematics
Numerical modeling of quasi-steady process in conducting nondispersive medium with relaxation
E. A. Bogatyreva South Ural State University, Chelyabinsk, Russian Federation
Аннотация:
Sufficient conditions of existence and uniqueness of weak generalized solution to the Dirichlet – Cauchy problem for equation modeling a quasi-steady process in conducting nondispersive medium with relaxation are obtained. The main equation of the model is considered as a representative of the class of quasi-linear equations of Sobolev type. It enables to prove a solvability of the Dirichlet – Cauchy problem in a weak generalized meaning by methods developed for this class of equations. In suitable functional spaces the Dirichlet – Cauchy problem is reduced to the Cauchy problem for abstract quasi-linear operator differential equation of the special form. Algorithm of numerical solution to the Dirichlet – Cauchy problem based on the Galerkin method is developed. Results of computational experiment are provided.
Ключевые слова:
Galerkin method, quasi-linear Sobolev type equation, weak generalized solution, numerical modeling.
Поступила в редакцию: 24.02.2015
Образец цитирования:
E. A. Bogatyreva, “Numerical modeling of quasi-steady process in conducting nondispersive medium with relaxation”, J. Comp. Eng. Math., 2:1 (2015), 45–51
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/jcem13 https://www.mathnet.ru/rus/jcem/v2/i1/p45
|
Статистика просмотров: |
Страница аннотации: | 170 | PDF полного текста: | 63 | Список литературы: | 46 |
|