Известия высших учебных заведений. Поволжский регион. Физико-математические науки
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Правила для авторов

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Известия высших учебных заведений. Поволжский регион. Физико-математические науки:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Известия высших учебных заведений. Поволжский регион. Физико-математические науки, 2021, выпуск 4, страницы 71–87
DOI: https://doi.org/10.21685/2072-3040-2021-4-6
(Mi ivpnz49)
 

Эта публикация цитируется в 5 научных статьях (всего в 5 статьях)

Математика

Итерационные методы решения уравнений Амбарцумяна. Часть 2

И. В. Бойков, А. А. Пивкина (Шалдаева)

Пензенский государственный университет, Пенза, Россия
Список литературы:
Аннотация: Актуальность и цели. Уравнение Амбарцумяна и его обобщения являются одними из основных интегральных уравнений астрофизики, нашедшими широкое применение во многих областях физики и техники. Уравнение Амбарцумяна играет важную роль при исследовании рассеивания света в средах бесконечной оптической толщины. В настоящее время не известно аналитическое решение этого уравнения, поэтому актуальной является разработка приближенных методов его решения. Для решения уравнения Амбарцумяна предложено несколько итерационных методов, применяемых при решении практических задач. Построены также методы коллокаций и механических квадратур, обоснование которых проведено при достаточно жестких условиях. В предыдущей работе авторов построен и обоснован сплайн-коллокационный метод решения уравнения Амбарцумяна со сплайнами нулевого порядка. Точность этого метода равна $O(N^{-1})$, где $O(N)$ - число узлов коллокации. Представляет значительный интерес построение итерационного метода, адаптированного к гладкости коэффициентов и ядер уравнения. Рассеивание света в средах конечной оптической толщины описывается системами уравнений Амбарцумяна, для приближенного решения которых необходимо построение и обоснование эффективных численных методов. Построению таких методов посвящена данная статья. Материалы и методы. Построение и обоснование итерационных методов решения систем уравнений Амбарцумяна основано на обобщении непрерывного метода решения нелинейных операторных уравнений. Метод и его обобщение построены на основе Ляпуновской теории устойчивости и устойчивы к возмущению начальных условий, коэффициентов и ядер решаемых уравнений. Дополнительным достоинством непрерывного метода решения нелинейных операторных уравнений является то, что при его реализации не требуется обратимость производной Гато от нелинейного оператора. Результаты. Построены сплайн-коллокационные со сплайнами первого порядка методы решения уравнения и систем уравнений Амбарцумяна и даны их обоснования. Решены модельные примеры, иллюстрирующие эффективность методов. Выводы. Рассмотрены уравнения, обобщающие классические уравнения Амбарцумяна. Для их решения построены и обоснованы вычислительные схемы сплайн-коллокационных методов. Полученные результаты могут быть использованы при решении ряда задач астрофизики.
Ключевые слова: непрерывный операторный метод, уравнение Амбарцумяна, сингулярное интегральное уравнение, сплайн-коллокационный метод.
Тип публикации: Статья
УДК: 517.95; 519.6
Образец цитирования: И. В. Бойков, А. А. Пивкина (Шалдаева), “Итерационные методы решения уравнений Амбарцумяна. Часть 2”, Известия высших учебных заведений. Поволжский регион. Физико-математические науки, 2021, № 4, 71–87
Цитирование в формате AMSBIB
\RBibitem{BoyPiv21}
\by И.~В.~Бойков, А.~А.~Пивкина (Шалдаева)
\paper Итерационные методы решения уравнений Амбарцумяна. Часть 2
\jour Известия высших учебных заведений. Поволжский регион. Физико-математические науки
\yr 2021
\issue 4
\pages 71--87
\mathnet{http://mi.mathnet.ru/ivpnz49}
\crossref{https://doi.org/10.21685/2072-3040-2021-4-6}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/ivpnz49
  • https://www.mathnet.ru/rus/ivpnz/y2021/i4/p71
    Цикл статей
    Эта публикация цитируется в следующих 5 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Поволжский регион. Физико-математические науки
    Статистика просмотров:
    Страница аннотации:72
    PDF полного текста:15
    Список литературы:21
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024