Известия высших учебных заведений. Поволжский регион. Физико-математические науки
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Правила для авторов

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Известия высших учебных заведений. Поволжский регион. Физико-математические науки:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Известия высших учебных заведений. Поволжский регион. Физико-математические науки, 2013, выпуск 4, страницы 5–16 (Mi ivpnz372)  

Эта публикация цитируется в 1 научной статье (всего в 1 статье)

Математика

Оптимальные методы аппроксимации тепловых полей

И. В. Бойков, Н. П. Кривулин, В. А. Рязанцев

Пензенский государственный университет, Пенза
Список литературы:
Аннотация: Актуальность и цели. Исследование тепловых полей играет огромную роль при решении многих физических и технических проблем. Достаточно упомянуть только такие направления, как термодинамика и теплоразведка. Тепловые поля имеют сложную структуру, не поддающуюся аналитическому представлению. Поэтому актуальными являются методы равномерной аппроксимации полей во всей области их определения. Помимо разработки методов равномерной аппроксимации тепловых полей, актуальной является разработка оптимальных по точности, сложности и памяти методов аппроксимации и восстановления тепловых полей. При исследовании физических полей разнообразной природы возникают следующие задачи: 1) построение алгоритмов равномерной аппроксимации полей в рассматриваемой области; 2) разработка оптимальных методов аппроксимации полей в заданной области. Материалы и методы. Для решения указанных задач в статье предлагается метод, общий для физических полей любой природы. Для построения наилучшего равномерного приближения физического поля определяется функциональный класс, к которому принадлежит данное поле, вычисляются поперечники Колмогорова и Бабенко соответствующего класса функций и строятся сплайны, являющиеся оптимальным методом приближения. Определяется класс функций, к которому принадлежат решения параболических уравнений и строятся равномерные в метрике пространства С аппроксимации этих решений в виде локальных сплайнов. Показано, что построенный алгоритм аппроксимации отличается от оптимального мультипликативным множителем. Результаты. В данной работе предложены эффективные методы равномерного восстановления тепловых полей. Выводы. Результаты работы могут использоваться при разработке численных методов моделирования задач теплоразведки и термодинамики.
Ключевые слова: тепловое поле, равномерная аппроксимация, локальный сплайн, оптимальные методы, класс функций, поперечник Колмогорова, поперечник Бабенко.
Тип публикации: Статья
УДК: 518.5
Образец цитирования: И. В. Бойков, Н. П. Кривулин, В. А. Рязанцев, “Оптимальные методы аппроксимации тепловых полей”, Известия высших учебных заведений. Поволжский регион. Физико-математические науки, 2013, № 4, 5–16
Цитирование в формате AMSBIB
\RBibitem{BoyKriRya13}
\by И.~В.~Бойков, Н.~П.~Кривулин, В.~А.~Рязанцев
\paper Оптимальные методы аппроксимации тепловых полей
\jour Известия высших учебных заведений. Поволжский регион. Физико-математические науки
\yr 2013
\issue 4
\pages 5--16
\mathnet{http://mi.mathnet.ru/ivpnz372}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/ivpnz372
  • https://www.mathnet.ru/rus/ivpnz/y2013/i4/p5
  • Эта публикация цитируется в следующих 1 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Поволжский регион. Физико-математические науки
    Статистика просмотров:
    Страница аннотации:42
    PDF полного текста:9
    Список литературы:15
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024