Известия высших учебных заведений. Поволжский регион. Физико-математические науки
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Правила для авторов

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Известия высших учебных заведений. Поволжский регион. Физико-математические науки:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Известия высших учебных заведений. Поволжский регион. Физико-математические науки, 2014, выпуск 3, страницы 78–100 (Mi ivpnz335)  

Эта публикация цитируется в 1 научной статье (всего в 1 статье)

Математика

О поведении функции Шеннона для задержки схем в модели, где задержка соединений определяется типами соединяемых элементов

Б. Р. Данилов

Московский государственный университет имени М. В. Ломоносова, Москва
Список литературы:
Аннотация: Актуальность и цели. Проблема синтеза дискретных управляющих систем является одной из основных проблем математической кибернетики. В общем виде она состоит в построении для заданной дискретной функции ее оптимальной (в том или ином смысле) структурной реализации в рассматриваемом классе управляющих систем. Теоретические результаты, полученные при решении указанной проблемы, находят применение в различных прикладных областях, к числу которых относятся задачи проектирования современных интегральных схем. Одним из основных параметров интегральных схем является их быстродействие, которое определяется, в частности, временем «прохождения» сигналов, подаваемых на входы схемы, к ее выходам. Эта характеристика схем называется задержкой и в общем случае является довольно сложным параметром, который может зависеть от ряда свойств составляющих схему элементов и способа их соединений. Математическая постановка изучаемой задачи синтеза рассматривает интегральные схемы через модель схем из функциональных элементов и задает определенное понимание задержки в этой модели. Традиционная задача синтеза в рассматриваемой постановке относится, в частности, к изучению функции Шеннона для задержки, т.е. задержки самой «плохой» функции алгебры логики, зависящей от заданных n переменных. К рассматриваемой задаче относится как ряд классических результатов теории дискретных управляющих систем, связанных с установлением асимптотики функции Шеннона для задержки схем, так и ряд новых направлений, и в, частности, направления, связанного с получением асимптотических оценок высокой степени точности. Целью данной работы является перенесение известных результатов в области синтеза схем на модели задержки схем, более точно отражающие емкостную специфику взаимосвязей элементов в интегральных схемах. Так, в работе изучается модель задержки в произвольном конечном полном базисе, в которой задержка базисного элемента - положительная действительная величина - по любому из его входов складывается из двух компонент: задержки межэлементного соединения входа с выходом предыдущего элемента и, собственно, внутренней задержки рассматриваемого элемента. При этом задержки элемента по разным входам, вообще говоря, считаются независимыми величинами. Материалы и методы. Используемые инструменты включают в себя, в частности, решение системы разностных уравнений, матричный подход, теорему Перрона. Известный ранее метод синтеза оптимальных по задержке схем применяется к синтезу схем в рассматриваемой модели задержки. Результаты. Получена линейная относительно величины n асимптотика функции Шеннона для задержки функций алгебры логики от заданных n переменных и задержки мультиплексорной функции, т.е. функции с n адресными и 2$^n$ информационными переменными, равной той информационной переменной, номер которой задается в двоичной системе счисления набором значений адресных переменных. Для определенного подкласса базисов установлены также асимптотические оценки высокой степени точности для функции Шеннона и задержки мультиплексорной функции, подобные известным ранее оценкам в более простых моделях. Выводы. Установленные результаты позволяют сделать вывод о существовании асимптотики функции Шеннона для задержки схем и о применимости известных ранее методов синтеза оптимальных по задержке схем в более широком классе моделей задержки.
Ключевые слова: задержка, глубина, схемы из функциональных элементов, мультиплексорная функция.
Финансовая поддержка
Работа выполнена при поддержке Российского фонда фундаментальных исследований, проект № 12-01-00964-а.
Тип публикации: Статья
УДК: 519.714
Образец цитирования: Б. Р. Данилов, “О поведении функции Шеннона для задержки схем в модели, где задержка соединений определяется типами соединяемых элементов”, Известия высших учебных заведений. Поволжский регион. Физико-математические науки, 2014, № 3, 78–100
Цитирование в формате AMSBIB
\RBibitem{Dan14}
\by Б.~Р.~Данилов
\paper О поведении функции Шеннона для задержки схем в модели, где задержка соединений определяется типами соединяемых элементов
\jour Известия высших учебных заведений. Поволжский регион. Физико-математические науки
\yr 2014
\issue 3
\pages 78--100
\mathnet{http://mi.mathnet.ru/ivpnz335}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/ivpnz335
  • https://www.mathnet.ru/rus/ivpnz/y2014/i3/p78
  • Эта публикация цитируется в следующих 1 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Поволжский регион. Физико-математические науки
    Статистика просмотров:
    Страница аннотации:51
    PDF полного текста:14
    Список литературы:19
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024