Известия высших учебных заведений. Поволжский регион. Физико-математические науки
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Правила для авторов

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Известия высших учебных заведений. Поволжский регион. Физико-математические науки:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Известия высших учебных заведений. Поволжский регион. Физико-математические науки, 2014, выпуск 4, страницы 37–46 (Mi ivpnz318)  

Математика

О некоторых свойствах оператора FE-замыкания в счетнозначной логике

И. С. Калинина

Московский государственный университет им. М. В. Ломоносова, Москва
Список литературы:
Аннотация: Актуальность и цели. Функциональные уравнения - это один из наиболее распространенных способов задания функций в различных областях математики. Рассматриваются системы функциональных уравнений на множестве функций счетнозначной логики и оператор замыкания, базирующийся на существовании решения данных систем - оператор FЕ-замыкания. Исследуются некоторые свойства и выразительная способность оператора FЕ-замыкания с логическими связками и без них. Материалы и методы. Рассматриваемый в работе оператор FЕ-замыкания исследуется аналогично операторам замыкания, известным ранее. Основные понятия, такие как замыкания множества, замкнутого и предполного класса, определяются аналогично другим операторам замыкания. В доказательствах используются известные факты о булевых функциях, о перестановках на множестве натуральных чисел, о классе однородных функций и о принципе сопряженности для оператора замыкания. Результаты. Доказано, что FЕ-замыкание пустого множества с логической связкой дизъюнкцией совпадает с FЕ-замыканием тернарного дискриминатора p . Установлено, что FЕ-замыкание тернарного дискриминатора p и конечного набора констант совпадает с множеством всех функций, самосопряженных относительно любых перестановок с неподвижными точками, совпадающими с данными константами. Показано, что мощность семейства FЕ-предполных классов не менее чем континуальна. Выводы. На основе рассмотренных свойств оператора FЕ-замыкания с логическими связками и без них можно сделать оценку его выразительных способностей. Рассматриваемый оператор замыкания является сильным оператором замыкания (в сравнении, например, с оператором суперпозиции), тем не менее порождает достаточно много замкнутых и предполных классов.
Ключевые слова: функции счетнозначной логики, оператор FE-замы­кания.
Тип публикации: Статья
УДК: 519.716
Образец цитирования: И. С. Калинина, “О некоторых свойствах оператора FE-замыкания в счетнозначной логике”, Известия высших учебных заведений. Поволжский регион. Физико-математические науки, 2014, № 4, 37–46
Цитирование в формате AMSBIB
\RBibitem{Kal14}
\by И.~С.~Калинина
\paper О некоторых свойствах оператора FE-замыкания в счетнозначной логике
\jour Известия высших учебных заведений. Поволжский регион. Физико-математические науки
\yr 2014
\issue 4
\pages 37--46
\mathnet{http://mi.mathnet.ru/ivpnz318}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/ivpnz318
  • https://www.mathnet.ru/rus/ivpnz/y2014/i4/p37
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Поволжский регион. Физико-математические науки
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024