|
Математика
Решение задачи определения параметров неоднородности в цилиндрических телах по измерению поля вне тела
Р. О. Евстигнеев Пензенский государственный университет, Пенза
Аннотация:
Актуальность и цели. Решение задач дифракции на телах, расположенных в свободном пространстве, является актуальной задачей акустики и электродинамики. Решается скалярная обратная задача с использованием значений поля в точках наблюдения, расположенных за пределами тела на небольшом расстоянии. В большинстве современных устройств точки наблюдения располагаются по окружности, что затрудняет исследование на сетках прямоугольной формы. Для этого удобнее использовать цилиндрическую систему координат и проводить исследования на телах цилиндрической формы. Материалы и методы. Рассматривается задача дифракции скалярной волны. Данная задача описывается уравнением Липпмана - Швингера, по которому рассчитывается полное поле внутри тела. Применяя алгоритм, позволяющий по результатам измеренного поля рассчитывать полное поле внутри тела и используя имеющиеся значения, можно восстанавливать параметры неоднородности в теле цилиндрической формы. Результаты. Разработан алгоритм, позволяющий решать обратную задачу в цилиндрической системе координат. Данный алгоритм применим не только для вещественных данных, но и для комплексных значений. Проанализирована устойчивость алгоритма к погрешностям измерений. Выводы. Представленные численные результаты показывают, что исследованный алгоритм применим в цилиндрической системе координат и позволяет восстанавливать структуру и геометрию тела. Исследованный алгоритм является устойчивым к погрешностям измерений.
Ключевые слова:
объемное сингулярное интегральное уравнение, интегральное уравнение, краевая задача, численные методы, обратная задача, цилиндрическая система координат.
Образец цитирования:
Р. О. Евстигнеев, “Решение задачи определения параметров неоднородности в цилиндрических телах по измерению поля вне тела”, Известия высших учебных заведений. Поволжский регион. Физико-математические науки, 2017, № 4, 87–95
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/ivpnz181 https://www.mathnet.ru/rus/ivpnz/y2017/i4/p87
|
Статистика просмотров: |
Страница аннотации: | 42 | PDF полного текста: | 14 | Список литературы: | 18 |
|