Известия высших учебных заведений. Поволжский регион. Физико-математические науки
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Правила для авторов

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Известия высших учебных заведений. Поволжский регион. Физико-математические науки:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Известия высших учебных заведений. Поволжский регион. Физико-математические науки, 2021, выпуск 1, страницы 20–38
DOI: https://doi.org/10.21685/2072-3040-2021-1-3
(Mi ivpnz18)
 

Математика

Об изучении спектра семейства дифференциальных операторов, потенциалы которых сходятся к дельта-функции Дирака

С. И. Митрохин

Московский государственный университет имени М. В. Ломоносова, Москва, Россия
Список литературы:
Аннотация: Актуальность и цели. В работе предлагается новый метод исследования дифференциальных операторов с разрывными коэффициентами. Изучается последовательность дифференциальных операторов высокого четного порядка, потенциалы которых сходятся к дельта-функции Дирака. Предполагается, что потенциал оператора является кусочно-суммируемой функцией на отрезке задания оператора. В точках разрыва потенциала требуется выполнение условий «склейки» для корректного определения решений соответствующих дифференциальных уравнений. Исследованы спектральные свойства дифференциальных операторов, заданных на конечном отрезке, с одним из видов разделенных граничных условий. При больших значениях спектрального параметра методом Наймарка получена асимптотика фундаментальной системы решений соответствующих дифференциальных уравнений. С помощью этой асимптотики изучены условия «склейки» рассматриваемого дифференциального оператора. Затем изучены граничные условия исследуемого оператора. В результате выведено уравнение на собственные значения изучаемого оператора, которое представляет собой целую функцию. Исследована индикаторная диаграмма уравнения на собственные значения, которая является правильным шеснадцатиугольником. В различных секторах индикаторной диаграммы методом последовательных приближений Пикара найдена асимптотика собственных значений изучаемых дифференциальных операторов. В предельном случае найденная асимптотика собственных значений стремится к асимптотике собственных значений оператора, потенциалом которого является дельта-функция Дирака. Материалы и методы. Асимптотика фундаментальной системы решений дифференциальных уравнений с суммируемыми потенциалами при больших значениях спектрального параметра получена обобщенным методом Наймарка. Для нахождения корней уравнения на собственные значения изучаемого оператора методом Беллмана - Кука исследована индикаторная диаграмма, которая является правильным шеснадцатиугольником. Асимптотика собственных значений изучаемых дифференциальных операторов в различных секторах индикаторной диаграммы найдена методом последовательных приближений Пикара. Результаты. Изучен спектр ранее не изучаемого семейства дифференциальных операторов высокого четного порядка, потенциалы которых сходятся к дельта-функции Дирака. С учетом условия «склейки» в точках разрыва потенциалов доказано, что уравнение на собственные значения представляет собой квазиполином, корни которого можно найти методом Беллмана - Кука. Аналогичные результаты можно получить и для других видов разделенных граничных условий. Выводы. Полученные новые результаты об асимптотике спектра семейства дифференциальных операторов могут быть применены к исследованию базисности собственных функций аналогичных операторов, изучению функции Грина и вычислению формул регуляризованных следов операторов, последовательность потенциалов которых сходится к дельта-функции Дирака. Метод дельта-потенциалов применяется в физике для исследования короткодействующих примесей, дефектов в различных системах. В атомной и ядерной физике огромную популярность имеет модель точечных потенциалов, это подтверждает необходимость изучения операторов с дельта-потенциалами.
Ключевые слова: дифференциальный оператор с разрывными коэффициентами, асимптотика решений дифференциального уравнения, кусочно-суммируемый потенциал, дельта-функция Дирака, асимптотика собственных значений, спектр оператора.
Тип публикации: Статья
УДК: 517.9
Образец цитирования: С. И. Митрохин, “Об изучении спектра семейства дифференциальных операторов, потенциалы которых сходятся к дельта-функции Дирака”, Известия высших учебных заведений. Поволжский регион. Физико-математические науки, 2021, № 1, 20–38
Цитирование в формате AMSBIB
\RBibitem{Mit21}
\by С.~И.~Митрохин
\paper Об изучении спектра семейства дифференциальных операторов, потенциалы которых сходятся к дельта-функции Дирака
\jour Известия высших учебных заведений. Поволжский регион. Физико-математические науки
\yr 2021
\issue 1
\pages 20--38
\mathnet{http://mi.mathnet.ru/ivpnz18}
\crossref{https://doi.org/10.21685/2072-3040-2021-1-3}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/ivpnz18
  • https://www.mathnet.ru/rus/ivpnz/y2021/i1/p20
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Поволжский регион. Физико-математические науки
    Статистика просмотров:
    Страница аннотации:89
    PDF полного текста:41
    Список литературы:19
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024