Известия высших учебных заведений. Математика
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Изв. вузов. Матем.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Известия высших учебных заведений. Математика, 2023, номер 2, страницы 36–46
DOI: https://doi.org/10.26907/0021-3446-2023-2-36-46
(Mi ivm9852)
 

Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)

Конструктивное описание одного класса периодических функций на вещественной прямой

И. Х. Мусин

Институт математики с вычислительным центром Уфимского федерального исследовательского центра Российской академии наук, ул. Чернышевского, д. 112, г. Уфа, 450008, Россия
Список литературы:
Аннотация: При помощи некоторого семейства ${\mathcal H}$ выпуклых неубывающих на $[0, \infty)$ функций определено пространство $G({\mathcal H})$ $2 \pi$-периодических бесконечно дифференцируемых на числовой прямой функций с заданными оценками на все производные. Получено описание пространства $G({\mathcal H})$ через наилучшие тригонометрические приближения и скорость убывания коэффициентов Фурье. Указаны семейства ${\mathcal H}$, для которых функции из $G({\mathcal H})$ аналитически продолжимы в горизонтальную полосу. Получено внутреннее описание пространства таких продолжений. Приведены примеры семейства выпуклых функций ${\mathcal H}$.
Ключевые слова: ряд Фурье, коэффициенты Фурье, приближение тригонометрическими полиномами.
Поступила: 15.04.2022
Исправленный вариант: 15.04.2022
Принята к публикации: 29.06.2022
Англоязычная версия:
Russian Mathematics (Izvestiya VUZ. Matematika), 2023, Volume 67, Issue 2, Pages 32–42
DOI: https://doi.org/10.3103/S1066369X23020032
Тип публикации: Статья
УДК: 517.518
Образец цитирования: И. Х. Мусин, “Конструктивное описание одного класса периодических функций на вещественной прямой”, Изв. вузов. Матем., 2023, № 2, 36–46; Russian Math. (Iz. VUZ), 67:2 (2023), 32–42
Цитирование в формате AMSBIB
\RBibitem{Mus23}
\by И.~Х.~Мусин
\paper Конструктивное описание одного класса периодических функций на вещественной прямой
\jour Изв. вузов. Матем.
\yr 2023
\issue 2
\pages 36--46
\mathnet{http://mi.mathnet.ru/ivm9852}
\crossref{https://doi.org/10.26907/0021-3446-2023-2-36-46}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2023
\vol 67
\issue 2
\pages 32--42
\crossref{https://doi.org/10.3103/S1066369X23020032}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/ivm9852
  • https://www.mathnet.ru/rus/ivm/y2023/i2/p36
  • Эта публикация цитируется в следующих 2 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Статистика просмотров:
    Страница аннотации:110
    PDF полного текста:10
    Список литературы:24
    Первая страница:7
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024