Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Изв. Сарат. ун-та. Нов. сер. Сер.: Математика. Механика. Информатика:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика, 2023, том 23, выпуск 3, страницы 311–319
DOI: https://doi.org/10.18500/1816-9791-2023-23-3-311-319
(Mi isu986)
 

Научный отдел
Математика

Классическое и обобщенное решения смешанной задачи для однородного волнового уравнения с суммируемым потенциалом. Часть I. Классическое решение смешанной задачи

В. П. Курдюмов

Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского, Россия, 410012, г. Саратов, ул. Астраханская, д. 83
Список литературы:
Аннотация: Резольвентным подходом и использованием идеи А. Н. Крылова об ускорении сходимости рядов Фурье исследуются свойства формального решения смешанной задачи для однородного волнового уравнения с суммируемым потенциалом и нулевой начальной функцией. Такой метод позволяет получать глубокие результаты о сходимости формального ряда с произвольными граничными условиями и без завышения требований гладкости исходных данных. Рассматриваемые в статье разнопорядковые граничные условия таковы, что у оператора соответствующей спектральной задачи возможно наличие бесконечного множества кратных собственных значений и соответствующих им присоединенных функций. Получено классическое решение без завышения требований на начальную скорость $u'_t(x,0) =\psi(x)$. Показано, что при $\psi(x) \in L[0,1]$ формальное решение, являясь равномерным пределом классических, есть обобщенное решение, а когда $\psi(x) \in L_p[0,1]$, $1<p\leqslant 2$, формальное решение обладает значительно более гладкими свойствами по сравнению со случаем $\psi(x) \in L[0,1]$.
Ключевые слова: метод Фурье, формальное решение, волновое уравнение, резольвента.
Поступила в редакцию: 22.04.2022
Принята в печать: 01.09.2022
Реферативные базы данных:
Тип публикации: Статья
УДК: 519.663
Образец цитирования: В. П. Курдюмов, “Классическое и обобщенное решения смешанной задачи для однородного волнового уравнения с суммируемым потенциалом. Часть I. Классическое решение смешанной задачи”, Изв. Сарат. ун-та. Нов. сер. Сер.: Математика. Механика. Информатика, 23:3 (2023), 311–319
Цитирование в формате AMSBIB
\RBibitem{Kur23}
\by В.~П.~Курдюмов
\paper Классическое и обобщенное решения смешанной задачи для однородного волнового уравнения
с суммируемым потенциалом. Часть I. Классическое решение смешанной задачи
\jour Изв. Сарат. ун-та. Нов. сер. Сер.: Математика. Механика. Информатика
\yr 2023
\vol 23
\issue 3
\pages 311--319
\mathnet{http://mi.mathnet.ru/isu986}
\crossref{https://doi.org/10.18500/1816-9791-2023-23-3-311-319}
\edn{https://elibrary.ru/GUFKKJ}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/isu986
  • https://www.mathnet.ru/rus/isu/v23/i3/p311
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика
    Статистика просмотров:
    Страница аннотации:66
    PDF полного текста:30
    Список литературы:27
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024