Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Изв. Сарат. ун-та. Нов. сер. Сер.: Математика. Механика. Информатика:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика, 2017, том 17, выпуск 3, страницы 344–352
DOI: https://doi.org/10.18500/1816-9791-2017-17-3-344-352
(Mi isu729)
 

Эта публикация цитируется в 1 научной статье (всего в 1 статье)

Научный отдел
Механика

Расчёт наискорейших перелётов космического аппарата между круговыми орбитами

И. А. Панкратов

Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского, 410012, Россия, Саратов, Астраханская, 83
Список литературы:
Аннотация: В кватернионной постановке рассмотрена задача оптимальной переориентации орбиты космического аппарата (КА). Управление (вектор реактивной тяги, ортогональной плоскости орбиты) ограничено по модулю. Необходимо минимизировать длительность процесса переориентации орбиты КА. Для описания движения центра масс КА использованы кватернионные дифференциальные уравнения ориентации орбитальной системы координат. Рассмотрен актуальный частный случай задачи, когда орбита КА является круговой, а управление принимает свои максимальные по модулю значения на отдельных участках активного движения КА. Построен оригинальный генетический алгоритм нахождения траекторий наискорейших перелётов КА, в котором неизвестными величинами являются длительности участков активного движения КА. При применении этого способа не требуется какой-либо информации о неизвестных начальных значениях сопряжённых переменных. Высокая скорость работы предложенного генетического алгоритма достигнута за счёт использования существующего в данном случае известного аналитического решения уравнений задачи. Приведены примеры численного решения задачи для случая, когда отличие между начальной и конечной ориентациями орбиты КА составляет единицы градусов в угловой мере. При этом конечная ориентация орбиты КА соответствует ориентации орбиты одного из спутников отечественной орбитальной группировки ГЛОНАСС. Построены графики изменения компонент кватерниона ориентации орбитальной системы координат, отклонения текущего положения орбиты КА от требуемого, оптимального управления. Установлены особенности и закономерности процесса оптимальной переориентации орбиты КА.
Ключевые слова: космический аппарат, орбита, оптимизация, ген.
Реферативные базы данных:
Тип публикации: Статья
УДК: 629.78; 519.6
Образец цитирования: И. А. Панкратов, “Расчёт наискорейших перелётов космического аппарата между круговыми орбитами”, Изв. Сарат. ун-та. Нов. сер. Сер.: Математика. Механика. Информатика, 17:3 (2017), 344–352
Цитирование в формате AMSBIB
\RBibitem{Pan17}
\by И.~А.~Панкратов
\paper Расчёт наискорейших перелётов космического аппарата между круговыми орбитами
\jour Изв. Сарат. ун-та. Нов. сер. Сер.: Математика. Механика. Информатика
\yr 2017
\vol 17
\issue 3
\pages 344--352
\mathnet{http://mi.mathnet.ru/isu729}
\crossref{https://doi.org/10.18500/1816-9791-2017-17-3-344-352}
\elib{https://elibrary.ru/item.asp?id=29897306}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/isu729
  • https://www.mathnet.ru/rus/isu/v17/i3/p344
  • Эта публикация цитируется в следующих 1 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
    Статистика просмотров:
    Страница аннотации:268
    PDF полного текста:87
    Список литературы:51
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024