|
Эта публикация цитируется в 3 научных статьях (всего в 3 статьях)
Научный отдел
Математика
Решение однородной краевой задачи Римана с бесконечным индексом логарифмического порядка на луче новым методом
Р. Б. Салимов, Э. Н. Хасанова Казанский государственный архитектурно-строительный университет, 420043, Россия, Казань, Зеленая, 1
Аннотация:
Рассматривается однородная краевая задача Римана с краевым условием на луче — положительной действительной оси с началом в точке с координатой, равной единице, для функции, аналитической в комплексной плоскости с разрезом по указанному лучу. В краевом условии значение искомой аналитической функции в любой точке левого (при движении в положительном направлении) берега разреза представляется как произведение значения заданной функции, называемой коэффициентом, и значения искомой функции в указанной точке правого берега разреза. Предполагая, что модуль коэффициента удовлетворяет условию Гельдера всюду на луче, включая бесконечно удаленную точку, а аргумент коэффициента удовлетворяет условию Гельдера на любой конечной части луча и неограниченно растет как степень логарифма координаты точки луча при неограниченном удалении этой точки от начала луча. Выводится формула, определяющая аналитическую в верхней полуплоскости функцию, мнимая часть которой при стремлении координаты точки луча к бесконечности является бесконечно большой того же порядка, что и аргумент коэффициента краевого условия. Далее строится соответствующая функция в нижней полуплоскости. Использование указанных двух функций позволяет устранить бесконечный разрыв аргумента коэффициента краевого условия аналогично тому, как это делается в случае конечных разрывов этого коэффициента. На основе приемов, применяемых Ф. Д. Гаховым, задача с условием на луче приводится к задаче с краевым условием на всей действительной оси, для точек которой, нележащих на указанном луче, коэффициент краевого условия равен единице. Для решения последней задачи используется метод Ф. Д. Гахова. Найденное решение зависит от произвольной целой функции нулевого порядка, модуль которой подчинен одному условию, в то время как в случае конечного индекса решение задачи зависит от произвольного многочлена степени не выше индекса задачи.
Ключевые слова:
краевая задача Римана, аналитическая функция, бесконечный индекс, логарифмический порядок.
Образец цитирования:
Р. Б. Салимов, Э. Н. Хасанова, “Решение однородной краевой задачи Римана с бесконечным индексом логарифмического порядка на луче новым методом”, Изв. Сарат. ун-та. Нов. сер. Сер.: Математика. Механика. Информатика, 17:2 (2017), 160–171
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/isu713 https://www.mathnet.ru/rus/isu/v17/i2/p160
|
Статистика просмотров: |
Страница аннотации: | 355 | PDF полного текста: | 108 | Список литературы: | 72 |
|