|
Интеллектуальные системы. Теория и приложения, 2021, том 25, выпуск 5, страницы 75–78
(Mi ista327)
|
|
|
|
The two-dimensional closest neighbor search problem solution using the cellular automata with locators
D. I. Vasilev Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Chair of Mathematical Theory of Intelligent Systems
Аннотация:
This article describes a cellular automaton with locators that solves the problem of finding the nearest neighbour. The problem is to find from a finite set of points the one closest to a predetermined "central" point. In contrast to the classical model of a cellular automaton, in the model under consideration, instantaneous transmission of signals through the ether at an arbitrary distance is allowed. It is shown that this possibility makes it possible to solve the problem in constant time, which is strikingly different from the one-dimensional case, where a logarithmic lower complexity estimate by the minimal distance is obtained.
Ключевые слова:
cellular automata, homogeneous structures, the closest neighbour search problem.
Образец цитирования:
D. I. Vasilev, “The two-dimensional closest neighbor search problem solution using the cellular automata with locators”, Интеллектуальные системы. Теория и приложения, 25:5 (2021), 75–78
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/ista327 https://www.mathnet.ru/rus/ista/v25/i5/p75
|
|