|
Интеллектуальные системы. Теория и приложения, 2021, том 25, выпуск 5, страницы 55–74
(Mi ista326)
|
|
|
|
The complexity of multilayer $d$-dimensional circuits
T. Sitdikova, G. V. Kalachevb a Google LLC
b Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Problems of Theorecical Cybernetics Lab
Аннотация:
In this paper we research a model of multilayer circuits with a single logical layer. We consider $\lambda$-separable graphs as a support for circuits. We establish the Shannon function lower bound $\max ( \frac{2^n}{n}, \frac{2^n (1 - \lambda)}{\log k})$ for this type of circuits where k is the number of layers. For d-dimensional graphs, which are $\lambda$-separable for $\lambda = \frac{d-1}{d}$, this gives the Shannon function lower bound $\frac{2^n}{\min(n, d \log k)}$. For multidimensional rectangular circuits the proved lower bound asymptotically matches to the upper bound.
Ключевые слова:
multilayer circuits, multidimensional circuits, Shannon function asymptotics, circuit complexity, graph separators.
Образец цитирования:
T. Sitdikov, G. V. Kalachev, “The complexity of multilayer $d$-dimensional circuits”, Интеллектуальные системы. Теория и приложения, 25:5 (2021), 55–74
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/ista326 https://www.mathnet.ru/rus/ista/v25/i5/p55
|
Статистика просмотров: |
Страница аннотации: | 63 | PDF полного текста: | 21 | Список литературы: | 18 |
|