|
Интеллектуальные системы. Теория и приложения, 2016, том 20, выпуск 2, страницы 203–268
(Mi ista131)
|
|
|
|
Эта публикация цитируется в 7 научных статьях (всего в 7 статьях)
Об одновременной минимизации площади, мощности и глубины плоских схем, реализующих частичные булевы операторы
Г. В. Калачев Московский государственный университет имени М. В. Ломоносова
Аннотация:
В работе рассматривается задача одновременной минимизации площади, мощности и глубины плоских схем, реализующих частичные булевы операторы. В качестве меры мощности рассматривается максимальный потенциал, он равен максимальному количеству выходов элементов, выдающих единицу на заданном входном наборе схемы, где максимум берeтся по всем входным наборам. Показано,что при незначительных ограничениях на область определения оператора существует схема, имеющая оптимальный порядок мощности, площади и глубины. В частности, для всюду определeнных операторов с n входами и m выходами порядок мощности равен $\frac {m \sqrt{2^n}}{\sqrt {min(m,n)}}$, порядок глубины равен $max(n, \log_{2}m)$.
Ключевые слова:
схемы из функциональных элементов, плоские схемы, клеточные схемы, мощность, глубина, функция Шеннона, верхние оценки, булевы операторы.
Образец цитирования:
Г. В. Калачев, “Об одновременной минимизации площади, мощности и глубины плоских схем, реализующих частичные булевы операторы”, Интеллектуальные системы. Теория и приложения, 20:2 (2016), 203–268
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/ista131 https://www.mathnet.ru/rus/ista/v20/i2/p203
|
Статистика просмотров: |
Страница аннотации: | 178 | PDF полного текста: | 57 |
|