|
Численное исследование асимптотического затухания длинноволновых колебаний электрического поля для уравнения Власова
И. Ф. Потапенко
Аннотация:
Рассматривается плазма электронов на нейтрализующем фоне бесконечно тяжелых ионов. Численно моделируется кинетическое уравнение Власова с начальным градиентом температуры в 1D1V геометрии конечными разностями для типичных длин порядка длины свободного пробега $r_D\ll L_0\leqslant\lambda_{ei}$. Проводится сравнение с асимптотической формулой для электрического поля, полученной в линеаризованном случае в [1]. Показано экспоненциально слабое затухание осциллирующего электрического поля в нелинейном случае. Скорость затухания зависит от параметра $\varepsilon=r_D/L_0$. Это обстоятельство необходимо учитывать при кинетическом моделировании слабо столкновительной плазмы.
Ключевые слова:
уравнение Власова–Ампера, квазинейтральный предел, асимптотика длинноволновых колебаний.
Образец цитирования:
И. Ф. Потапенко, “Численное исследование асимптотического затухания длинноволновых колебаний электрического поля для уравнения Власова”, Препринты ИПМ им. М. В. Келдыша, 2020, 093, 24 с.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/ipmp2884 https://www.mathnet.ru/rus/ipmp/y2020/p93
|
Статистика просмотров: |
Страница аннотации: | 64 | PDF полного текста: | 33 | Список литературы: | 16 |
|