Итоги науки и техники. Современная математика и ее приложения. Тематические обзоры
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Правила для авторов

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Итоги науки и техники. Современная математика и ее приложения. Тематические обзоры, 2022, том 204, страницы 124–134
DOI: https://doi.org/10.36535/0233-6723-2022-204-124-134
(Mi into948)
 

Эта публикация цитируется в 3 научных статьях (всего в 3 статьях)

Разрешимость смешанной задачи для гиперболического уравнения с распадающимися краевыми условиями при отсутствии полноты собственных функций

В. С. Рыхлов

Саратовский государственный университет
Список литературы:
Аннотация: Рассматривается смешанная задача для гиперболического уравнения второго порядка с постоянными коэффициентами и смешанной производной. Предполагается, что краевые условия являются распадающимися (одно в левом конце основного интервала, другое в правом конце), корни характеристического уравнения простые и лежат на положительном луче. На коэффициенты уравнения и краевых условий наложены такие условия, что отсутствует двукратная полнота собственных функций соответствующей спектральной задачи для дифференциального квадратичного пучка. Методом контурного интеграла Пуанкаре"– Коши получены достаточные условия разрешимости данной задачи.
Ключевые слова: смешанная задача, гиперболическое уравнение, существование решения, разрешимость смешанной задачи, распадающиеся краевые условия, постоянные коэффициенты, собственные функции, двукратная неполнота, двукратное разложение, нерегулярный операторный пучок, дифференциальный пучок, метод контурного интеграла, метод Пуанкаре—Коши.
Тип публикации: Статья
УДК: 517.958, 517.927.25
MSC: 35L20,35P10
Образец цитирования: В. С. Рыхлов, “Разрешимость смешанной задачи для гиперболического уравнения с распадающимися краевыми условиями при отсутствии полноты собственных функций”, Материалы Воронежской весенней  математической школы  «Современные методы теории краевых  задач. Понтрягинские чтения–XXXI». Воронеж, 3–9 мая 2020 г., Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 204, ВИНИТИ РАН, М., 2022, 124–134
Цитирование в формате AMSBIB
\RBibitem{Ryk22}
\by В.~С.~Рыхлов
\paper Разрешимость смешанной задачи для гиперболического уравнения с распадающимися краевыми условиями при отсутствии полноты собственных функций
\inbook Материалы Воронежской весенней  математической школы 
«Современные методы теории краевых  задач. Понтрягинские чтения–XXXI».
Воронеж, 3–9 мая 2020 г.
\serial Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз.
\yr 2022
\vol 204
\pages 124--134
\publ ВИНИТИ РАН
\publaddr М.
\mathnet{http://mi.mathnet.ru/into948}
\crossref{https://doi.org/10.36535/0233-6723-2022-204-124-134}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/into948
  • https://www.mathnet.ru/rus/into/v204/p124
  • Эта публикация цитируется в следующих 3 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Итоги науки и техники. Современная математика и ее приложения. Тематические обзоры Итоги науки и техники. Современная математика и ее приложения. Тематические обзоры
    Статистика просмотров:
    Страница аннотации:137
    PDF полного текста:67
    Список литературы:29
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024