Итоги науки и техники. Современная математика и ее приложения. Тематические обзоры
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Правила для авторов

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Итоги науки и техники. Современная математика и ее приложения. Тематические обзоры, 2021, том 198, страницы 41–49
DOI: https://doi.org/10.36535/0233-6723-2021-198-41-49
(Mi into872)
 

Эволюционные уравнения второго порядка дивергентного типа для соленоидального векторного поля на $\mathbb{R}^3$

Ю. П. Вирченкоa, А. В. Субботинb

a Национальный исследовательский университет "Белгородский государственный университет"
b Белгородский государственный технологический университет имени В. Г. Шухова
Список литературы:
Аннотация: В работе описан класс $\mathfrak{K}_2^{(0)}(\mathbb{R}^3)$ дифференциальных операторов второго порядка дивергентного типа, обладающих инвариантностью относительно трансляций $\mathbb{R}^3$ и преобразующихся ковариантным образом при вращениях $\mathbb{R}^3$. На основе таких операторов возможно конструирование эволюционных уравнений для описания инвариантной относительно трансляций времени динамики векторного соленоидального поля $\boldsymbol{V}(\boldsymbol{x},t)$ так, что каждый оператор класса $\mathfrak{K}_2^{(0)}(\mathbb{R}^3)$ определяет инфинитезимальный сдвиг по времени $t$ этого поля. Доказано утверждение о том, что класс всех эволюционных уравнений для унимодального векторного поля $\boldsymbol{V}(\boldsymbol{x},t)$ тривиален.
Ключевые слова: дивергентный дифференциальный оператор, трансляционная инвариантность, векторное поле, ковариантность, плотность потока поля, унимодальность, соленоидальность.
Тип публикации: Статья
УДК: 517.957.6
MSC: 35Q60, 35K10
Образец цитирования: Ю. П. Вирченко, А. В. Субботин, “Эволюционные уравнения второго порядка дивергентного типа для соленоидального векторного поля на $\mathbb{R}^3$”, Дифференциальные уравнения и математическая физика, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 198, ВИНИТИ РАН, М., 2021, 41–49
Цитирование в формате AMSBIB
\RBibitem{VirSub21}
\by Ю.~П.~Вирченко, А.~В.~Субботин
\paper Эволюционные уравнения второго порядка дивергентного типа для соленоидального векторного поля на $\mathbb{R}^3$
\inbook Дифференциальные уравнения и математическая физика
\serial Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз.
\yr 2021
\vol 198
\pages 41--49
\publ ВИНИТИ РАН
\publaddr М.
\mathnet{http://mi.mathnet.ru/into872}
\crossref{https://doi.org/10.36535/0233-6723-2021-198-41-49}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/into872
  • https://www.mathnet.ru/rus/into/v198/p41
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Итоги науки и техники. Современная математика и ее приложения. Тематические обзоры Итоги науки и техники. Современная математика и ее приложения. Тематические обзоры
    Статистика просмотров:
    Страница аннотации:95
    PDF полного текста:52
    Список литературы:16
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024